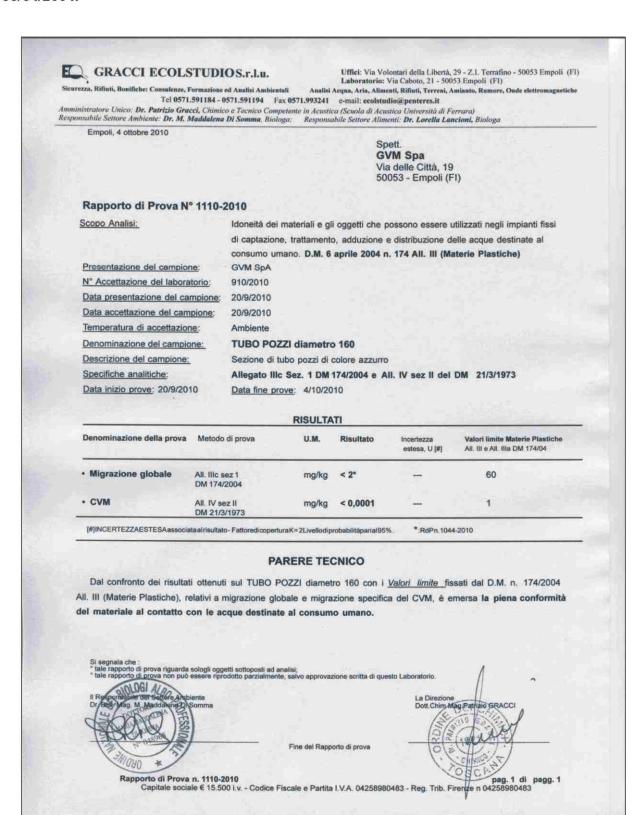
Manuale Tecnico Tubo Pozzi

in condotta

Caratteristiche fisiche e meccaniche tubo pozzi

Dopo quarant'anni di esperienza, la società GVM Spa interpreta oggi le esigenze del mercato proponendo una serie che va alla ricerca del miglior rapporto qualità/prezzo. Di seguito sono elencate le caratteristiche tecniche essenziali del prodotto offerto.

CARATTERISTICHE DELLA MISCELA DI PVC*					
Proprietà	Valore	Metodo			
Peso specifico	1,60 kg/dm ³	ISO 1183			
Resistenza urto	50 J/mt	IZOD – ISO 180			
Vicat	80 °C	ISO 306			


^{* =} tolleranza 5%

CARATTERISTICHE DEL TUBO*					
Diametro esterno (mm)	Spessore (mm)	Classe di Rigidità UNI 9969 (kN/m²)	Pressione Collasso (kg/cm²)		
125	4	SN 8	2,0		
125	6	SN 25	6,5		
140	3,5	SN 4	1,0		
140	6,5	SN 25	6,5		
140	7,7	SN 40	10,5		
160	5	SN 8	2,0		
160	6,5	SN 15	4,3		
160	7,7	SN 25	7,0		
160	9	SN 40	11,5		
180	6,5	SN 12	3,0		
180	7,7	SN 20	5,0		
180	9	SN 30	8,0		
200	6,5	SN 8	2,0		
200	7,7	SN 12	3,5		
200	9	SN 20	5,5		
250	6,5	SN 4	1,0		
250	7,7	SN 8	2,0		
250	9	SN 12	3,0		
250	12	SN 25	7,0		
315	7,7	SN 4	1,0		
315	9	SN 8	1,5		
400	9,8	SN 4	1,0		

^{* =} tolleranza 5%

Atossicità

Il tubo pozzi realizzato dalla società GVM Spa è assolutamente idoneo al contatto con fluidi alimentari, in quanto possiede tutti i requisiti previsti dal decreto ministeriale nº 174 del 06/04/2004.

Sistema di giunzione con vite autofilettante

Il sistema proposto è quello del bicchiere liscio congiunto con viti autofilettanti, in quanto questo... *E'ECONOMICO*: poiché il costo del tubo con bicchiere liscio è circa la metà di quello filettato.

E' VELOCE: la posa della vite autofilettante richiede un'unica operazione e consente di condizionare il pozzo in tempi rapidissimi, decisamente minori anche rispetto all'uso dei classici rivetti.

MANTIENE INTEGRA LA PARETE INTERNA DEL TUBO: l'utilizzo di viti autofilettanti opportunamente dimensionate evita che queste sporgano all'interno del tubo.

CONSENTE DI RECUPARE LA COLONNA: la vite autofilettante può essere tolta in modo semplice e rapito, consentendo di recuperare i tubi della colonna qualora fosse necessario.

CONSENTE DI OTTENERE UNA GIUNZIONE ERMETICA: i tubi della GVM Spa dispongono di bicchieri più lunghi e precisi rispetto ai bicchieri tradizionali per edilizia; tuttavia l'utilizzo di un opportuno sigillante consente di ottenere un accoppiamento perfettamente ermetico.

Montaggio delle viti autofilettanti

Al fine di ottenere una giunzione funzionale e sicura, è necessario seguire due semplici, ma fondamentali, regole. La prima consiste nel montare le viti in modo sfasato, come indicato nella foto sottostante; la seconda di scegliere correttamente diametro e numero di viti; esse devono infatti sostenere il peso della colonna, senza però indebolire il tubo. La società GVM Spa presenta in questo manuale i risultati della ricerca svolta sui propri tubi.

NUMERO e TIPO DI VITI OTTIMALE								
Diametro	Spessore	Diametro	N° viti x profondità di:					
esterno	nominale	Vite (mm)	50	90	130	180		
(mm)	(mm)	(mm)	mt	mt	mt	mt		
125	4	3,9	3	4	6	8		
125	6	4,8	3	4	6	8		
140	3,5	3,9	3	4	6	8		
140	6,5	4,8	3	6	8	10		
140	7,7	4,8	3	6	10	12		
160	5	3,9	3	6	10	12		
160	6,5	4,8	3	6	10	12		
160	7,7	4,8	3	6	10	12		
160	9	4,8	4	8	10	14		
180	6,5	4,8	3	6	10	12		
180	7,7	4,8	4	8	10	14		
180	9	4,8	4	8	12	16		
200	6,5	4,8	3	6	10	12		
200	7,7	4,8	4	8	12	14		
200	9	4,8	4	8	12	16		
250	6,5	4,8	4	8	12	16		
250	7,7	4,8	6	10	14	18		
250	9	4,8	6	10	16	20		
250	12	4,8	8	14	20	3		
315	7,7	4,8	6	12	18	24		
315	9	4,8	8	14	20	-		
400	9,8	4,8	10	20	30	-		

Progettazione di un pozzo: 1 - campi di applicazione e limiti d'impiego

Nel tempo i tubi in PVC hanno trovato sempre maggiore impiego nel casing di pozzi d'acqua. Tutto questo a discapito dell'acciaio poiché, oltre al minor costo, i tubi in PVC sono più leggeri, più resistenti alle correnti vaganti o ai ferrobatteri, e gli interventi di rigenerazione risultano più agevoli per la maggior resistenza agli agenti chimici impiegati. A svantaggio del PVC c'è però la minore resistenza, quindi è inadatto per rivestire pozzi con elevate spinte statiche e dinamiche.

Ci sono alcuni campi di applicazione in cui il tubo in PVC è sconsigliato a prescindere dai parametri di progetto. Ci riferiamo in presenza di acque con temperature superiori a 40°C o per progetti con portate superiori a 20 l/s. Nel primo caso la temperatura riduce la rigidità del tubo, diminuendo la sua capacità di resistere alle pressioni esterne. Nel secondo gli urti e le sollecitazioni meccaniche innescate dalla pompa sono, a lungo termine, mal supportati dal tubo in PVC.

La determinazione della tubazione in PVC da utilizzare è frutto di uno studio idrogeologico che si articola nelle seguenti fasi, poi analizzate:

- valutazione della trasmissività e profondità dell'acquifero per la scelta della pompa
- determinazione delle pressioni agenti sulla colonna
- dimensionamento del tubo in PVC.

Di fatto oggi i tubi in PVC sono principalmente usati per condizionare pozzi di profondità sino a 150 mt; tuttavia, in assenza di spinte eccessive e con un'opportuna scelta del tipo di tubazione, si segnalano anche pozzi rivestiti con tubi in PVC oltre i 200 mt.

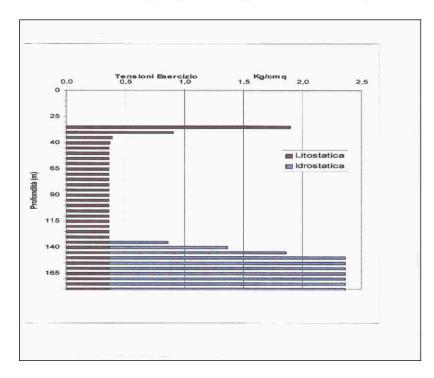
Progettazione di un pozzo: 2 - scelta della pompa

La determinazione dell'elettropompa sommersa per la realizzazione di un pozzo (e quindi la relativa portata) è limitata, oltre che dalla trasmissività dell'acquifero, anche dal diametro interno della tubazione prescelta. Difatti è fortemente raccomandato che il diametro della pompa sia minore del diametro interno del tubo di almeno 50 mm.

Tale necessità deriva dal fatto che le pompe con diametro prossimo a quello delle tubazioni causano sia problemi di eccessivo surriscaldamento, sia problemi di estrazione. Confrontando le caratteristiche delle pompe in commercio e per le considerazioni sopra esposte, si consiglia di seguire la seguente tabella per la scelta del diametro dell'opera.

Portata prevista (l/s)	2,0	3,0	4,0	5,0	6,0	8,0	12,0	25,0
Diam. minino (mm)	125	140	160	180	200	250	315	400

Progettazione di un pozzo: 3 - determinazione delle spinte agenti sulla colonna


Le spinte, che si possono generare sulla colonna durante la realizzazione e l'esercizio dell'opera, sono di varia natura. La loro azione è assimilabile ad una pressione esterna uniformemente distribuita sulla circonferenza del tubo e può essere stimata solo da un professionista specializzato. Tuttavia qui di seguito sono elencate le componenti più importanti ed i metodi abitualmente impiegati per la loro determinazione.

Pressione geostatica: solitamente di piccola entità, viene trascurata.

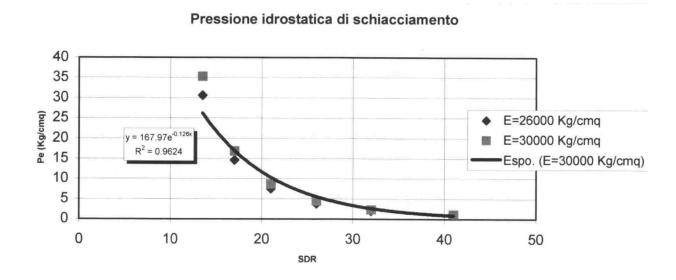
Pressione litostatica: diviene rilevante in caso di terreni pelitici rigonfianti; infatti i terreni argillosi che rigonfiano per effetto dell'assorbimento di acqua possono generare tensioni di notevole entità. In questi casi si usa prudentemente la teoria di Einstein/Schwartz.

Pressioni idrostatiche: sono tra le principali cause di schiacciamento del tubo, soprattutto nelle fasi di installazione delle tubazioni. Lo squilibrio barico genera una pressione che è stimata, secondo i casi, uguale ad un valore variabile da H/2 ad H, dove H è la pressione barica di una colonna d'acqua uguale alla profondità del pozzo.

Pressioni idrodinamiche: derivanti da operazioni di spurgo o pistonaggio, se eseguite senza particolare cura o accortezza si considerano assimilabili a 3H/4 (anche in questo caso H è la pressione barica di una colonna d'acqua uguale alla profondità del foro).

<u>Progettazione di un pozzo: 4 - verifica del tubo in PVC</u>

Una volta determinata la spinta massima agente sulla colonna, questa va moltiplicata per un coefficiente di sicurezza e confrontata con la pressione idraulica di collasso del tubo in PVC, rispetto alla quale deve essere ovviamente minore. Quindi può essere scritta la seguente relazione:


 $Pmax * Cs \le Pcol PVC$

dove:

Pmax è la spinta massima sulla colonna stimata dallo studio idrogeologico.

Cs è il coefficiente di sicurezza che tiene conto di tutti quei fenomeni trascurati in fase di progetto, per esempio ovalizzazione o sottospessori locali del tubo, non completa conoscenza della stratigrafia del terreno, probabili franamenti o manovre incaute da parte del trivellatore durante la posa. Tale valore varia solitamente tra 1 e 2.

Pcol PVC è la pressione di collasso per i tubi in PVC. Per i tubi ad alto modulo elastico, come quelli realizzati dalla società GVM spa, essa è calcolata solo in via teorica, ed i valori ottenuti sono indicati nella tabella con le caratteristiche tecniche del tubo.

Raccomandazioni:

La seguente sezione è solo di supporto ai progettisti per il dimensionamento e la verifica di pozzi in cui è previsto il tubo in PVC per il casing dell'opera. I dati in esso contenuti sono ricavati dalla numerosa letteratura presente sull'argomento e poi confrontati con le numerose esperienze pratiche, che ne hanno evidenziato l'attendibilità. Tuttavia, vista la complessità dei fenomeni fisici e meccanici che agiscono su un tubo durante la fase di posa o di esercizio della sua funzione, nessuna garanzia può essere fornita dal fabbricante sull'uso dei dati qui indicati.

Via delle Città, 19 - 50052 Certaldo (FI) - C.P. 192

Telefax: 0571 652220

e-mail: gvm@gvm.it www.gvm.it